ON MILNOR'S INVARIANT FOR LINKS. II. THE CHEN GROUP

BY KUNIO MURASUGI

1. **Introduction.** Let G be a group and $\{G_q\}$ the lower central series of G, i.e. $G_1 = G$ and $G_q = [G_{q-1}, G]$ for $q \ge 2$. Using the second derived group G'' = [G', G'], Chen defines a descending series of normal subgroups $\{G(q)\}$ as follows [1]: G(1) = G and $G(q) = G_q G''$ for $q \ge 2$. For the sake of convenience, we denote $G(\infty) = \bigcap_{q \ge 1} G(q)$. Then the quotient group Q(G; q) = G(q)/G(q+1) is abelian. If G is finitely generated, so is Q(G; q). Q(G; q) will be called the *Chen group* of G in this paper.

If G is the group of a (polygonal) link L in the 3-sphere, then Q(G;q) is an invariant of the link type. The objective of this paper is to show that if L consists of two components then Q(G;q) is completely determined by its Alexander polynomial $\Delta(x,y)$. More precisely, a group invariant defined by means of $\Delta(x,y)$ completely determines the Chen group of the link group of L. If L consists of more than two components, Q(G;q) may be determined by the Alexander polynomials of its subsets. In particular, if $\Delta(x,y)=0$ then Q(G;q) is free abelian and conversely. This is a characterization of a link whose Alexander polynomial vanishes. As another characterization of such a link, we shall prove that $\Delta(x,y)=0$ iff the longitudes of L lie in $G(\infty)$.

We shall use the following notation.

Let G be a group. $[a, b] = aba^{-1}b^{-1}$, for $a, b \in G$. $[a_1, \ldots, a_q] = [[a_1, \ldots, a_{q-1}], a_q]$ for $a_i \in G$. $\langle a_1, \ldots, a_q \rangle$ denotes the normal closure of a_1, \ldots, a_q . ∂ denotes the free derivative in a free group ring, d the usual partial derivative of a function, and 0 the trivializer. Further let

$$D^{k}(t_{1}^{\alpha_{1}},\ldots,t_{\lambda}^{\alpha_{\lambda}})f=\frac{d^{k}}{dt_{1}^{\alpha_{1}},\ldots,dt_{\lambda}^{\alpha_{\lambda}}}f,$$

where the upper suffix k frequently is omitted unless it causes confusion, and let $D^k(\cdots)^0 f = [D^k(\cdots)f]^0$.

2. A group invariant. Let G be a finitely presented group such that

(2.1) G has a presentation
$$\mathscr{P}$$
 of the deficiency one, $\mathscr{P}(G) = (x_1, \ldots, x_m : r_1, \ldots, r_{m-1}),$

Presented to the Society, January 24, 1969 under the title *The Chen's group of a link*; received by the editors March 27, 1969.

and

(2.2) the commutator quotient group G/G' is a free abelian group of rank $n \ge 1$.

Let F be a free group generated by x_1, \ldots, x_m . Choose a free basis $\mathfrak{A} = \{t_1, \ldots, t_n\}$ of $A_n = G/G'$. Let $\Phi \colon F \to G$ and $\Psi \colon G \to A_n$ be natural homomorphisms(1). The Alexander matrix $M(\mathscr{P}, \mathfrak{A}) = \|\partial r_i/\partial x_j\|^{\Phi\Psi}$ associated to \mathscr{P} and \mathfrak{A} is an $(m-1) \times m$ matrix over the integral group ring ZA_n . The greatest common divisor $\Delta_{\mathfrak{A}}(t_1, \ldots, t_n)$ of all $(m-1) \times (m-1)$ minors of $M(\mathscr{P}, \mathfrak{A})$ will be called the Alexander polynomial of $(\mathscr{P}, \mathfrak{A})$. This is an integer polynomial on t_1, \ldots, t_n with possibly negative exponents and is determined uniquely up to a unit $\pm t_1^{\lambda_1} \ldots t_n^{\lambda_n}$ in ZA_n .

Now $\Delta_{\mathfrak{A}}(t_1,\ldots,t_n)$ depends upon the choice of a basis \mathfrak{A} . In other words, $\Delta_{\mathfrak{A}}(t_1,\ldots,t_n)$ itself is not a group invariant. (See an example below.) However, by means of $\Delta_{\mathfrak{A}}(t_1,\ldots,t_n)$, we can define a sequence of numerical group invariants $\{A^{(k)}\}$.

DEFINITION 2.1. Let $A^{(-1)}(\mathfrak{A}) = 0$ and define $A^{(0)}(\mathfrak{A}) = ab [\Delta_{\mathfrak{A}}(t_1, \ldots, t_n)]^0(^2)$. Inductively, we suppose that $A^{(l)}(\mathfrak{A})$ is defined for $0 \le l \le k-1$. For any sequence $1 \le i_1 \le i_2 \le \cdots \le i_k \le n$, we set

$$A_{i_1,i_2,\ldots,i_k}^{(k)}(\mathfrak{A}) = \operatorname{ab}\left\{\frac{1}{\alpha_1!\cdots\alpha_n!}D^k(t_{i_1},\ldots,t_{i_k})^0 \Delta_{\mathfrak{A}}(t_1,\ldots,t_n)\right\},\,$$

where α_j is the number of occurances of j in the sequence i_1, \ldots, i_k . Let d be the g.c.d. of $A^{(0)}(\mathfrak{A}), \ldots, A^{(k-1)}(\mathfrak{A})$. Let $\overline{A}_{i_1,\ldots,i_k}^{(k)}(\mathfrak{A})$ be the smallest nonnegative integer such that $\overline{A}_{i_1,\ldots,i_k}^{(k)} \equiv A_{i_1,\ldots,i_k}^{(k)} \mod d$. Then we define

$$A^{(k)}(\mathfrak{A}) = \text{g.c.d.} \{ \overline{A}_{i_1,\ldots,i_k}^{(k)}(\mathfrak{A}) \},$$

where i_1, \ldots, i_k run over all permutations $1, 2, \ldots, n$, subject to $i_1 \le i_2 \le \cdots \le i_k$. If all $\overline{A}_{i_1, \ldots, i_k}^{(k)}(\mathfrak{A})$ are zero, we define $A^{(k)}(\mathfrak{A}) = 0$.

From the definition, the following is evident

(2.3) $A^{(k)}(\mathfrak{A}) \text{ is a nonnegative integer and } A^{(k)}(\mathfrak{A}) = 0$ for a sufficiently large k.

THEOREM 2.1. $\{A^{(k)}(\mathfrak{A})\}\$ is a group invariant. That is to say, $\{A^{(k)}(\mathfrak{A})\}\$ is independent of the choice of presentation and free basis \mathfrak{A} of G/G'. Thus it may be denoted by $\{A^{(k)}(G)\}$.

Proof. First we should note that $A^{(k)}(\mathfrak{A})$ does not depend upon a particular choice of the Alexander polynomial.

⁽¹⁾ The same symbols will be used for the natural extensions between integral group rings.

⁽²⁾ ab means "the absolute value of".

Now, from the invariance of the elementary ideals of the Alexander matrix (Chapter VIII, (4.5) in [2]), we need only show that $\{A^{(k)}(\mathfrak{A})\}$ is independent of the choice of basis of G/G'.

Let $\mathscr{B} = \{s_1, \ldots, s_n\}$ be another basis of G/G'. Then \mathscr{B} is obtained from \mathfrak{A} by a finite sequence of the following four transformations.

(i)
$$t_1 \rightarrow t_1^{-1}, t_i \rightarrow t_i$$
 for $i \ge 2$,

(ii)
$$t_1 \rightarrow t_1 t_2, t_i \rightarrow t_i$$
 for $i \ge 2$,

(2.4) (iii)
$$t_1 \to t_2, t_2 \to t_1, t_i \to t_i \text{ for } i \ge 3,$$

(iv)
$$t_1 \rightarrow t_{i+1}$$
 for $1 \le i \le n-1$, $t_n \rightarrow t_1$.

Therefore, it is enough to show that $A^{(k)}(\mathfrak{A})$ is unaltered under each transformation. From the definition, it follows immediately that $A^{(k)}(\mathfrak{A})$ is unaltered under (iii) or (iv).

Suppose that \mathscr{B} is obtained from \mathfrak{A} by (i) or (ii). Then it suffices to show the theorem for n=2. Let $\mathscr{B}=\{t_1^{\varepsilon}t_2^{\eta}, t_2\}$, $\varepsilon=\pm 1$, $\eta=0$ or 1. By a remark given at the beginning of this proof, we may assume without loss of generality that $\Delta_{\mathscr{B}}(t_1, t_2) = \Delta_{\mathfrak{A}}(t_1^{\varepsilon}t_2^{\eta}, t_2)$. Since $A^{(0)}(\mathscr{B})=|\Delta_{\mathscr{B}}(1, 1)|=|\Delta_{\mathfrak{A}}(1, 1)|=A^{(0)}(\mathfrak{A})$, we can assume inductively that $A^{(1)}(\mathfrak{A})=A^{(1)}(\mathscr{B})$ for $l\leq k-1$.

Let $w(\alpha, \beta)$ be a sequence $1, 1, \ldots, 1, 2, 2, \ldots, 2$ of length k, where there are α 1's and β 2's. Now by a substitution $t_1 = s_1^e s_2^n$ and $t_2 = s_2$, $\Delta_{\mathfrak{A}}(t_1, t_2)$ becomes the Alexander polynomial $\Delta_{\mathscr{B}}(s_1, s_2)$ associated to \mathscr{B} . Therefore,

$$A_{w(\alpha,\beta)}^{(k)}(\mathcal{B}) = \operatorname{ab} \left\{ \frac{1}{\alpha!\beta!} D(s_1^{\alpha}, s_2^{\beta})^{0} \Delta_{\mathcal{B}}(s_1, s_2) \right\}.$$

By means of the chain rule and the usual rule for differentiating product, we obtain

(2.5)
$$\frac{1}{\alpha!\beta!} D(s_{1}^{\alpha}, s_{2}^{\beta})^{0} \Delta_{\mathscr{B}}(s_{1}, s_{2}) = \frac{1}{\alpha!\beta!} \sum_{\gamma=0}^{\beta} {\beta \choose \gamma} D(t_{1}^{\alpha+\gamma}, t_{2}^{\beta-\gamma})^{0} \Delta_{\mathfrak{A}}(t_{1}, t_{2}) \varepsilon^{\alpha} \eta^{\beta} + \sum_{0 \leq \lambda + \mu < \alpha + \beta} f_{\lambda,\mu}(s_{1}, s_{2})^{0} D(t_{1}^{\lambda}, t_{2}^{\mu})^{0} \Delta_{\mathfrak{A}}(t_{1}, t_{2}),$$

where $f_{\lambda,\mu}(s_1, s_2)$ is a certain polynomial on s_1 and s_2 . Since $D(t_1^{\lambda}, t_2^{\mu})^0 \Delta_{\mathfrak{A}}(t_1, t_2) \equiv 0 \mod A^{(\lambda+\mu)}(\mathfrak{A})$, it follows from (2.5) that

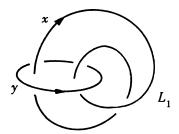
$$(2.6) \ A_{w(\alpha,\beta)}^{(k)}(\mathscr{B}) \equiv \operatorname{ab}\left\{\sum_{\gamma=0}^{\beta} \varepsilon^{\alpha} \eta^{\gamma} A_{w(\alpha+\gamma,\beta-\gamma)}^{(k)}(\mathfrak{A})\right\} \cdot \operatorname{mod} \ \operatorname{g.c.d.} \{A^{(0)}(\mathfrak{A}), \ldots, A^{(k-1)}(\mathfrak{A})\}.$$

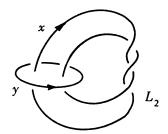
This implies that $A^{(k)}(\mathcal{B}) = A^{(k)}(\mathfrak{A})$.

COROLLARY. If G/G' is infinite cyclic, then $A^{(0)}(G)=1$ and $A^{(k)}(G)=0$ for $k \ge 1$.

If G is the group of a link L, $A^{(k)}(G)$ will be denoted by $A^{(k)}(L)$.

EXAMPLE.





The group of two links L_1 and L_2 are isomorphic, since they have the same presentation $(a, b: a^2b = ba^2)$. However, the Alexander polynomials are distinct. In fact, $\Delta_1(x, y) = xy + 1$ and $\Delta_2(x, y) = x^3y + 1$. Then $A^{(0)}(L_1) = A^{(0)}(L_2) = 2$, $A^{(1)}(L_1) = A^{(1)}(L_2) = 1$ and $A^{(k)}(L_1) = A^{(k)}(L_2) = 0$ for $k \ge 2$. Although L_1 and L_2 are of different isotopy types, their Milnor invariants are coincident: $\mu(12) = 2$, $\mu(112) = \mu(122) = 1$ and $\mu(i_1i_2 \cdots i_n) = 0$ for $n \ge 4$.

3. Structure of F(q)/F(q+1). Let F be a free group with m free generators, $x_1, \ldots, x_m, m < \infty$. Let $\mathcal{S}(F)$ denote the set of generators of F, i.e. $\mathcal{S}(F) = \{x_1, \ldots, x_m\}$. We define an order "<" in $\mathcal{S}(F)$ in such a way that $x_i < x_j$ iff i < j. Now any element of Q(F;q) is a finite product of elements $[a_1, \ldots, a_q]F(q+1)$, $a_i \in F$. An element $[a_1, \ldots, a_q]$ of F(q) is called a normal element (of length q) if all a_i lie in $\mathcal{S}(F)$. Further, an element $[a_1, \ldots, a_q]$ is said to be standard if it is a normal element and if $a_1 < a_2$ and $a_1 \le a_3 \le \cdots \le a_q$. Any standard element is of the form:

$$[x_i, x_j, x_i, \dots, x_i, x_{i+1}, \dots, x_{i+1}, \dots, x_m, \dots, x_m].$$
 $\alpha_i \text{ times} \qquad \alpha_{i+1} \text{ times} \qquad \alpha_m \text{ times}$

For the sake of simplicity this element will be denoted by $[x_i, x_j, x_i^{\alpha_i}, \ldots, x_m^{\alpha_m}]$, $\alpha_i, \ldots, \alpha_m$ being nonnegative integers.

Now the group Q(F; q) is completely determined by the following.

THEOREM 3.1 (CHEN). Q(F;q) is a free abelian group whose basis consists of all standard representatives.

Theorem 3.1 follows easily from Lemmas 3.1-3.7 below.

LEMMA 3.1. If $a \equiv b_1^{m_1}, \ldots, b_k^{m_k} \mod F(r)$, then for $q \ge 1$

$$[a, c_1, \ldots, c_q] \equiv \prod_{i=1}^k [b_i, c_1, \ldots, c_q]^{m_i} \mod F(r+q),$$

and for $q \ge 2$,

(3.2)
$$[c_1, \ldots, c_q, a] \equiv \prod_{i=1}^k [c_1, \ldots, c_q, b_i]^{m_i} \mod F(r+q).$$

LEMMA 3.2. For $q \ge 3$, $[a_1, a_2, a_3, \ldots, a_q] \equiv [a_2, a_1, a_3, \ldots, a_q]^{-1} \mod F''$.

LEMMA 3.3. $[a_1, a_2, a_3, ..., a_q] \equiv [a_1, a_2, a_{\sigma(3)}, ..., a_{\sigma(q)}] \mod F''$, where σ is a permutation of 3, ..., q.

LEMMA 3.4.

$$[a_1, a_2, a_3, a_4, \ldots, a_n][a_3, a_1, a_2, a_4, \ldots, a_n][a_2, a_3, a_1, a_4, \ldots, a_n] \equiv 1 \mod F''.$$

Since Lemmas 3.1–3.4 can easily be verified by induction, proofs will be omitted. (Cf. Lemmas A.1, A.3 and Corollary in [1].)

Let f be an element of F. Let $S_r = S_r(\alpha_1, \ldots, \alpha_m)$ be the set of all (proper) shuffle(3) of α_1 1's, α_2 2's, ..., α_m m's, where $\alpha_1 + \cdots + \alpha_m = r$. For $\omega = a_1 a_2 \cdots a_r \in S_r(\alpha_1, \ldots, \alpha_m)$, we denote

$$\frac{\partial^r f}{\partial \omega} = \frac{\partial^r f}{\partial x_{a_1} \cdots \partial x_{a_r}} \text{ and } D^r(\omega) = D^r(x_{a_1}, \dots, x_{a_r}).$$

Then the following lemma is easy.

LEMMA 3.5. If $f \in F''$, then for any ω of S_{τ} and x_i in $\mathcal{S}(F)$,

$$D^{r}(\omega)^{0}(\partial f/\partial x_{i}) = 0.$$

If $f \in F_{q+1}$, then for any ω of $S_r(\partial^r f/\partial \omega)^0 = 0$, $0 \le r \le q$.

Further we can prove

LEMMA 3.6.

(3.3)
$$\frac{1}{\alpha_1! \cdots \alpha_m!} D(x_1^{\alpha_1}, \ldots, x_m^{\alpha_m})^0 f^{\phi} = \sum_{\omega} \left(\frac{\partial^{\tau} f}{\partial \omega} \right)^{0(4)},$$

where ω runs over all elements in S_r .

Proof. For m=1, the lemma follows from (3.9) in [3]. Thus we may assume inductively that (3.3) holds for m-1. In other words,

$$\frac{1}{\alpha_1!\cdots\alpha_{m-1}!}D(x_1^{\alpha_1},\ldots,x_{m-1}^{\alpha_{m-1}})^0f^{\phi}=\sum_{\tau}\left(\frac{\partial^{\tau-\alpha_m}f}{\partial\tau}\right),$$

where τ runs over all elements in $S_{\tau-\alpha_m}(\alpha_1,\ldots,\alpha_{m-1},0)$. Since any element of $S_{\tau}(\alpha_1,\ldots,\alpha_m)$ is obtained as a generalized shuffle of a certain element of $S_{\tau-\alpha_m}$ and α_m m's, it follows from Lemma 3.3 in [4] that

$$\sum_{\omega} \left(\frac{\partial^{r} f}{\partial \omega} \right)^{0} = \left[\sum_{\tau} \left(\frac{\partial^{r-\alpha_{m}} f}{\partial \tau} \right)^{0} \right] \left[\frac{\partial^{\alpha_{m}} f}{\partial x_{m}^{\alpha_{m}}} \right]^{0}$$

$$= \frac{1}{\alpha_{1}! \cdots \alpha_{m-1}!} \left[D(x_{1}^{\alpha_{1}}, \dots, x_{m-1}^{\alpha_{m-1}})^{0} f^{\phi} \right] \frac{1}{\alpha_{m}!} \left[D(x_{m}^{\alpha_{m}})^{0} f^{\phi} \right]$$

$$= \frac{1}{\alpha_{1}! \cdots \alpha_{m}!} D(x_{1}^{\alpha_{1}}, \dots, x_{m}^{\alpha_{m}})^{0} f^{\phi},$$

⁽³⁾ For the definition, see [4, p. 82].

⁽⁴⁾ ϕ denotes the natural homomorphism from ZF onto Z(F/F').

where ω and τ , respectively, run over all elements in S_r and $S_{r-\alpha_m}$. From Lemmas 3.5 and 3.6, we see

LEMMA 3.7. If $f \in F(q+1)$, then for any $\omega \in S_r$ and $x_j \in \mathcal{S}(F)$,

$$D^{r}(\omega)^{0}(\partial f/\partial x_{i})^{\phi} = 0, \qquad 0 \leq r < q.$$

LEMMA 3.8. Let g be an element of F(q). Then

$$g \equiv \prod [x_i, x_j, x_i^{\alpha_i}, x_{i+1}^{\alpha_{i+1}}, \dots, x_m^{\alpha_m}]^{\beta(i,j,\alpha_i,\dots,\alpha_m)} \bmod F(q+1),$$

where $1 \le i \le j \le m$, $\alpha_i + \cdots + \alpha_m = q - 2$ and

$$(3.4) \quad \beta(i,j,\,\alpha_i,\,\ldots,\,\alpha_m) = \frac{(-1)^q}{(\alpha_i+1)!\alpha_{i+1}!\cdots\alpha_m!} D^{q-1}(x_i^{\alpha_i+1},\,x_{i+1}^{\alpha_{i+1}},\,\ldots,\,x_m^{\alpha_m})^0 \left(\frac{\partial g}{\partial x_j}\right)^{\phi}.$$

REMARK. This lemma may be regarded as a generalization of (5.5) in [3]. **Proof.** Let $g = \prod [x_i, x_j, x_i^{\alpha_i}, \dots, x_m^{\alpha_m}]^{\beta} \cdot z$, where $z \in F(q+1)$. Since

$$\left(\frac{\partial}{\partial x_i}\left[x_i, x_j, x_i^{\alpha_i}, \ldots, x_m^{\alpha_m}\right]^{\beta}\right) = (-1)(1-x_i)^{\alpha_i+1}(1-x_{i+1})^{\alpha_{i+1}}\cdots(1-x_m)^{\alpha_m}\beta,$$

it follows that

$$(3.5) \qquad \left(\frac{\partial g}{\partial x_i}\right)^{\phi} = \sum_{i=1}^{\infty} (-1)(1-x_i)^{\alpha_i+1}(1-x_{i+1})^{\alpha_{i+1}}\cdots(1-x_m)^{\alpha_m}\beta + \left(\frac{\partial z}{\partial x_i}\right)^{\phi}.$$

Since $D^{q-1}(\cdots)^0(\partial z/\partial x_i)^{\phi}=0$ by Lemma 3.7, we obtain from (3.5) that

$$\frac{1}{(\alpha_i+1)!\alpha_{i+1}!\cdots\alpha_n!}D(x_i^{\alpha_i+1},\ldots,x_m^{\alpha_m})^0\left(\frac{\partial g}{\partial x_j}\right)^{\phi}=(-1)^q\beta.$$

This completes the proof.

COROLLARY (CHEN). For $q \ge 2$, the rank of Q(F; q) is

$$(q-1)\left(\frac{m+q-2}{q}\right)$$

In particular, if m=2, then $Q(F;q) \cong \mathbb{Z}^{q-1}(5)$.

4. Subgroup $H_{\Omega}(q)$. Let F be a free group and let Ω be a nonempty subset of $\mathcal{S}(F)$.

DEFINITION 4.1. $H_{\Omega}(q)$ is the set of all elements w of F such that for any s, $0 \le s < q$, and for any $\alpha_i \in \Omega$ and $\beta \in \mathcal{S}(F)$,

$$(4.1) D(\alpha_1, \ldots, \alpha_s)^0 (\partial w/\partial \beta)^{\phi} = 0.$$

It is well known that $H_{\Omega}(1) = F'$ for any Ω . Further, from the definition, it follows that if q < r then $H_{\Omega}(q) \supset H_{\Omega}(r)$ and if $\Omega' \supset \Omega$ then $H_{\Omega}(q) \supset H_{\Omega'}(q)$.

⁽⁵⁾ G^r denotes the direct product of r copies of G.

LEMMA 4.1. $H_{\Omega}(q)$ is a normal subgroup of F, and $H_{\Omega}(q) \supset F(q+1)$ for any Ω .

Proof. It is obvious that $H_{\Omega}(q)$ is a subgroup of F. Let $g \in F$ and $u \in H_{\Omega}(q)$. Since $u \in F'$, it follows that $u^{\phi} = 1$, and hence, $[\partial (gug^{-1})/\partial \beta]^{\phi} = g^{\phi}(\partial u/\partial \beta)^{\phi}$. Therefore, for any s < q, $D(\alpha_1, \ldots, \alpha_s)^0 [\partial (gug^{-1})/\partial \beta]^{\phi} = 0$. This is a proof of the first proposition. Moreover, since $H_{\Omega}(q)$ contains both $H_{\mathcal{S}}(q)$ and F'', and since $H_{\mathcal{S}}(q)$ contains F_{q+1} by Lemma 3.5, it follows that $H_{\Omega}(q) \supset F_{q+1}F'' = F(q+1)$.

For the sake of convenience, we denote $H_{\Omega}(\infty) = \bigcap_{r \ge 1} H_{\Omega}(r)$.

COROLLARY. $H_{\Omega}(\infty) \supset F''$ for any Ω .

LEMMA 4.2. Let $g = [z_1, ..., z_q]$ be a normal element of F(q). If $z_i \notin \Omega$ for some $i \ge 3$ or if neither z_1 nor z_2 lies in Ω then $g \in H_{\Omega}(\infty)$.

Proof. For any $\beta \in \mathcal{S}(F)$, $(\partial g/\partial \beta)^{\phi} = (1-z_q)\cdots(1-z_3)((\partial/\partial \beta)[z_1,z_2])^{\phi}$. If $z_i \notin \Omega$ for $i \geq 3$, then for any $s \geq 0$, $D(\alpha_1,\ldots,\alpha_s)(\partial g/\partial \beta)^{\phi}$ contains $1-z_i$ as a common factor. Hence $D(\alpha_1,\ldots,\alpha_s)^{0}(\partial g/\partial \beta)^{\phi} = 0$. Suppose that z_1 and z_2 are not in Ω . Since

$$\left(\frac{\partial[z_1,z_2]}{\partial\beta}\right)^{\phi} = (1-z_2)\left(\frac{\partial z_1}{\partial\beta}\right)^{\phi} + (z_1-1)\left(\frac{\partial z_2}{\partial\beta}\right)^{\phi},$$

 $D(\alpha_1, \ldots, \alpha_s)(\partial g/\partial \beta)^{\phi}$ contains either $1-z_2$ or z_1-1 as a common factor. Hence its trivializer vanishes.

Now we assume that there is defined a mapping τ from $\mathcal{S}(F)$ into F such that

$$(4.2) g \equiv \tau(g) \text{mod } F(2).$$

Let N(q) be the subgroup generated by all normal elements in F(q). We shall extend τ to a mapping from N(q) to F(q).

DEFINITION 4.2. Let $g = [z_1, \ldots, z_q]$ be a normal element of F(q). If all z_i lie in Ω then $\tau(g) = g$. Otherwise let z_i be the first element not in Ω . Then $\tau(g) = [z_1, \ldots, z_{i-1}, \tau(z_i), z_{i+1}, \ldots, z_q]$. τ is extended in the obvious way to a mapping from N(q) to F(q), which will be denoted by the same letter τ . In particular, we define $\tau(1) = 1$. From (4.2) and Lemma 3.1, it follows

(4.3) For any
$$g \in N(q)$$
, $g \equiv \tau(g) \mod F(q+1)$.

Further, since $g^{\phi} = g^{\tau \phi}$ for any $g \in N(q)$, we see that the following lemma is an easy consequence of Lemma 4.2.

LEMMA 4.3. Let $g = [z_1, \ldots, z_q]$ be a normal element of F(q). If z_i is not in Ω for $i \ge 3$ or if neither z_1 nor z_2 lies in Ω , then $\tau(g) \in H_{\Omega}(\infty)$.

By means of τ , we shall define a sequence of mappings $\{\tau_n\}$ from F to F(n).

First, we extend the order in $\mathcal{S}(F)$ lexicographically to an order in the set of normal elements of the same length. More precisely, we say $[a_1, \ldots, a_q] < [b_1, \ldots, b_q]$ iff $a_1 < b_1$ or $a_1 = b_1, \ldots, a_m = b_m, a_{m+1} < b_{m+1}, 0 < m < q$.

Using this order, we can write any element of F(q)/F(q+1) as a finite product of standard elements in a unique way (Theorem 3.1). Namely, for any $g \in F(q)$,

 $g \equiv \prod_{i=1}^k g_i^{\alpha_i} \mod F(q+1)$, where $g_1 < g_2 < \cdots < g_k$ and α_i is a nonzero integer. This rule ρ_q which to an element g of F(q) associates a finite product of standard elements $\prod_{i=1}^k g_i^{\alpha_i}$ will be called the *standardization*. If g is a normal element of F(q), then $g \equiv \rho_q(g) \mod F''$.

Now we define τ_n inductively as follows:

For any $g \in F$, $\tau_1(g) = g \in F(1) = F$. Suppose that $\tau_n(g)$ is defined for $n \ge 1$. Then we define $\tau_{n+1}(g) = \tau_n(g) [\tau \rho_n \tau_n(g)]^{-1}$. Since $\tau_n(g) \equiv \tau \rho_n \tau_n(g) \mod F(n+1)$, it follows that $\tau_{n+1}(g) \in F(n+1)$.

LEMMA 4.4. If $g \in F(n)$, then $\tau_r(g) = g$ for $r \le n$.

Proof. For n=1, Lemma 4.4 is trivial. Assume that Lemma 4.4 holds for n-1. Since $g \in F(n)$ and $\tau_{n-1}(g) = g \equiv 1 \mod F(n)$, it follows that $\tau_n(g) = \tau_{n-1}(g)\tau(1)^{-1} = \tau_{n-1}(g) = g$.

LEMMA 4.5. If $g \in F(n) \cap H_{\Omega}(\infty)$ then $\tau_{n+1}(g) \in F(n+1) \cap H_{\Omega}(\infty)$.

Proof. Let $\rho_n(g) = \prod_i g_i^{\alpha_i}$. Since $F(n) \ni g$, $\tau_n(g) = g$, and hence, $\tau_{n+1}(g) = g(\tau \rho_n(g))^{-1}$. Since $\tau_{n+1}(g) \in F(n+1)$, we only need to show that $\tau_{n+1}(g) \in H_{\Omega}(\infty)$, or equivalently, $\tau \rho_n(g) \in H_{\Omega}(\infty)$. Now, since $g \in H_{\Omega}(\infty)$, it follows from Lemma 3.8 that g_i cannot be of the form: $[z_1, z_2, z_3, \ldots, z_n]$, where all z_i except possibly z_2 are in Ω . Thus, Lemma 4.4 follows from Lemma 4.3.

5. **Main Lemma.** Let F be a free group with two disjoint nonempty sets of generators $\Omega = \{x_1, \ldots, x_n\}$ and $\Gamma = \{a_1, \ldots, a_m\}$. Let τ be a mapping from $\mathcal{S}(F)$ to F defined as follows:

(5.1)
$$\tau(x_i) = x_i, \qquad 1 \le i \le n, \text{ and}$$

$$\tau(a_i) = f_{a_i}^{-1} a_i, \qquad 1 \le i \le m,$$

where $f_{a_i} \in F(2)$.

We define an order in $\mathcal{S}(F)$ as follows. Elements in Ω (or Γ) are naturally ordered according to their indices, and any element of Ω is *less* than any of Γ . This order can be extended lexicographically to an order in the set of normal elements of the same length. See §4.

Since τ satisfies (4.2), a sequence of mappings $\{\tau_n\}$ is well defined.

Now, using f_{a_i} , we shall define three endomorphisms ν , σ and ϕ_r $(r \ge 1)$ of F as follows:

(i)
$$\nu(x_i) = x_i \quad \text{and} \quad \nu(a_i) = f_{a_i},$$

(5.2) (ii)
$$\sigma(x_i) = x_i$$
 and $\sigma(a_i) = 1$,

(iii)
$$\phi_1 = \sigma$$
 and $\phi_r = \sigma \nu^{r-1}$, for $r \ge 2$.

Consider an element $w = [W, x_1]$ in F(2). We can write $w = \overline{w}\rho_2(w)$, where $\overline{w} \in F(3)$ and $\rho_2(w) \in F(2)$. Since $\tau_h(w) = \tau_{h-1}(w)[\tau \rho_{h-1}\tau_{h-1}(w)]^{-1}$ and $\tau_2(w) = w$, it follows by induction that

$$\tau_h(w) = w[\tau \rho_2 \tau_2(w)]^{-1} [\tau \rho_3 \tau_3(w)]^{-1} \cdots [\tau \rho_{h-1} \tau_{h-1}(w)]^{-1}.$$

We should note that $\tau_h(w)$ is a finite product of the τ -image of standard elements of the length < h. For convenience, we write $\tau_h(w)$ in the following form:

(5.3)
$$\tau_h(w) = \overline{w} \prod_{2 \le k \le h-1} \prod_i g_{k,i}^{\beta(k,i)},$$

where $g_{k,i}$ is a τ -image of a standard element of F(k). Therefore, $g_{k,i}^{\phi}$ is a standard element of F(k).

On the other hand, since $\tau_h(w) \in F(h)$, we see that $\rho_h \tau_h(w)$ is written as

$$\prod_{j} g_{h,j}^{\beta(h,j)},$$

where $g_{h,j}$ is a standard element of F(h).

The purpose of this section is to determine the exponent $\beta(k, i)$ of $g_{k,i}$ of some particular type. Denote by $\beta(z_1, \ldots, z_r)$ the exponent of the element $[z_1, \ldots, z_r]$ occurring in $\tau_h(w)$ or $\rho_h \tau_h(w)$. Then we shall prove

LEMMA 5.1.

$$(5.4) \beta(x_i, x_j, x_i^{\alpha_i}, \ldots, x_n^{\alpha_n}) = \frac{(-1)^{h-1}}{\alpha_i! \cdots \alpha_m!} D(x_i^{\alpha_i}, \ldots, x_n^{\alpha_n})^0 \left(\frac{\partial W^{\delta}}{\partial x_j}\right)^{\delta},$$

where $\phi = \phi_{h-1}$ and $\sum_{i} \alpha_{i} = h-2$.

Now to avoid unnecessary complications, we shall prove Lemma 5.1 for n=2, and use x, y instead of x_1 , x_2 . In fact, this is what we really need in the subsequent sections.

First we shall establish a relation between \overline{w} and W.

LEMMA 5.2. If $z \in \mathcal{S}(F)$ is different from x, then for $\lambda + \mu > 0$,

$$\frac{1}{\lambda!\mu!} D(x^{\lambda}, y^{\mu})^{0} \left(\frac{\partial W}{\partial z}\right)^{\phi} = \frac{(-1)}{(\lambda+1)!\mu!} D(x^{\lambda+1}, y^{\mu}) \left(\frac{\partial \overline{w}}{\partial z}\right)^{\phi}.$$

Proof. Since $w = \overline{w} \rho_2(w)$,

$$\left(\frac{\partial w}{\partial z}\right)^{\phi} = \left(\frac{\partial \rho_2(w)}{\partial z}\right)^{\phi} + \left(\frac{\partial \overline{w}}{\partial z}\right)^{\phi}.$$

On the other hand, $(\partial w/\partial z)^{\phi} = (1-x)(\partial W/\partial z)^{\phi}$, because of w = [W, x]. Therefore,

$$(5.5) (1-x)\left(\frac{\partial W}{\partial z}\right)^{\phi} = \left(\frac{\partial \rho_2(w)}{\partial z}\right)^{\phi} + \left(\frac{\partial \overline{w}}{\partial z}\right)^{\phi}.$$

Since $(\partial \rho_2(w)/\partial z)^{\phi}$ is a linear polynomial on x, y or a_j , $D(x^{\lambda+1}, y^{\mu})^0(\partial \rho_2(w)/\partial z)^{\phi} = 0$, for $\lambda + \mu \ge 1$. Thus from (5.5) we obtain

$$\frac{1}{(\lambda+1)!\mu!}\binom{\lambda+1}{1}(-1)D(x^{\lambda},y^{\mu})^{0}\left(\frac{\partial W}{\partial z}\right)^{\phi}=\frac{1}{(\lambda+1)!\mu!}D(x^{\lambda+1},y^{\mu})^{0}\left(\frac{\partial \overline{W}}{\partial z}\right)^{\phi}.$$

This is the required formula.

The next lemma is a recursion formula involving $\beta(z_1, \ldots, z_r)$. Let $u_i = \tau(a_i)$.

LEMMA 5.3. For $p+q \le h-2$, $p \ge 1$, $p+q \ge 2$,

$$\beta(x, u_i, x^{p-1}, y^q) = \sum_{r,s,k} \frac{1}{p!q!} r!s! (-1)^{r+s+p+q-1} \beta(x, u_k, x^{r-1}, y^s) \binom{p}{r} \binom{q}{s} \times D(x^{p-r}, y^{q-s})^0 \left(\frac{\partial u_k}{\partial a_i}\right)^{\phi} + \frac{(-1)^{p+q}}{(p-1)!q!} D(x^{p-1}, y^q)^0 \left(\frac{\partial W}{\partial a_i}\right)^{\phi},$$

where the summation runs over all r, s and k such that $1 \le r \le p$, $0 \le s \le q$, $1 \le r + s \le p + q - 1$, $1 \le k \le m$.

Proof. To obtain the required formula, we shall calculate $D(x^p, y^q)^0(\partial \tau h/\partial a_i)^\phi$ from (5.3). Since $p+q\geq 2$, $D(x^p, y^q)^0((\partial/\partial a_i)[z_1, z_2])^\phi=0$ for $z_i\in \mathcal{S}(F)$. Also, since $g_{k,j}$ is a τ -image of a standard element of F(k), it follows from Lemma 4.3 that $g_{k,j}=[z_1,\ldots,z_k]\in H_\Omega(\infty)$ if $z_i=u_i$ for some $i\geq 3$ or both z_1^ϕ and z_2^ϕ are in Γ . Therefore, by excluding those factors which are contained in $H_\Omega(\infty)$, we obtain:

For $p+q \ge 2$,

$$(5.6) D(x^{p}, y^{q})^{0} \left(\frac{\partial \tau_{h}(w)}{\partial a_{i}}\right)^{\phi} = D(x^{p}, y^{q})^{0} \left\{ \sum_{r,s,k,1 \leq r+s \leq p+q} (-1)\beta(x, u_{k}, x^{r-1}, y^{s}) \times (1-x)^{r} (1-y)^{s} \left(\frac{\partial u_{k}}{\partial a_{i}}\right)^{\phi} + \left(\frac{\partial \overline{w}}{\partial a_{i}}\right)^{\phi} \right\}.$$

Since $(\partial u_k/\partial a_i)^{\phi^0} = \delta_{i,k}$ and $D(x^p, y^a)^0(\partial \tau_h(w)/\partial a_i) = 0$ for $p+q \le h-2$, because $\tau_h(w) \in F(h)$, we see that if $p+q \ge 2$,

$$0 = \sum \beta(x, u_k, x^{r-1}, y^s) \binom{p}{r} \binom{q}{s} r! s! (-1)^{r+s-1} D(x^{p-r}, y^{q-s})^0 \left(\frac{\partial u_k}{\partial a_i}\right)^{\phi} + (-1)^{p+q-1} p! q! \beta(x, u_i, x^{p-1}, y^q) + D(x^p, y^q)^0 \left(\frac{\partial \overline{w}}{\partial a_i}\right).$$

From this formula and Lemma 5.2, Lemma 5.3 follows.

LEMMA 5.4. For any q, $2 \le q \le h-2$,

(5.7)
$$\beta(y, u_i, y^{q-1}) = \sum_{1 \le s \le q-1} \sum_{k} \frac{1}{q!} s! (-1)^{s+q-1} \beta(y, u_k, y^{s-1}) \binom{q}{s} \times D(y^{q-s})^0 \left(\frac{\partial u_k}{\partial a_i}\right)^{\phi} + \frac{(-1)^q}{q!} D(y^q)^0 \left(\frac{\partial \overline{w}}{\partial a_i}\right)^{\phi}.$$

Proof. From (5.3), it follows that if $q \ge 2$,

$$0 = D(y^{q})^{0} \left(\frac{\partial \tau_{h}(w)}{\partial a_{i}} \right)$$

$$= D(y^{q})^{0} \left\{ (-1)\beta(y, a_{i})(1-y) + \sum_{k} \sum_{1 \leq s \leq q} \beta(y, u_{k}, y^{s-1})(1-y)^{s}(-1) \left(\frac{\partial u_{k}}{\partial a_{i}} \right)^{\phi} + \left(\frac{\partial \overline{w}}{\partial a_{i}} \right)^{\phi} \right\}$$

$$= \sum_{k} \sum_{1 \leq s < q} (-1)^{s-1} \beta(y, u_{k}, y^{s-1}) s! \binom{q}{s} D(y^{q-s})^{0} \left(\frac{\partial u_{k}}{\partial a_{i}} \right)^{\phi}$$

$$+ (-1)^{q-1} q! \beta(y, u_{k}, y^{q-1}) + D(y^{q})^{0} \left(\frac{\partial \overline{w}}{\partial a_{i}} \right)^{\phi}. \qquad Q.E.D.$$

As a special case of Lemmas 5.3 and 5.4, we have

LEMMA 5.5.
$$\beta(x, u_i) = \beta(x, a_i) = (-1)(\partial W/\partial a_i)^{\phi 0}$$
.

Proof. From the expression

$$w = [W, x] = \overline{w}[x, y]^{\beta(x,y)} \prod_{i} [x, a_i]^{\beta(x,a_i)},$$

it follows that

$$\left(\frac{\partial w}{\partial a_i}\right)^{\phi} = (1-x)\left(\frac{\partial W}{\partial a_i}\right)^{\phi} = \left(\frac{\partial \overline{w}}{\partial a_i}\right)^{\phi} + (x-1)\beta(x, a_i).$$

Thus, $D(x)^0(\partial w/\partial a_i)^\phi = (-1)(\partial W/\partial a_i)^{\phi 0}$. On the other hand, $D(x)^0(\partial \overline{w}/\partial a_i)^\phi = 0$. Hence we have $D(x)^0(\partial W/\partial a_i)^\phi = \beta(x, a_i)$. Thus, Lemma 5.5 follows.

Now we are in position to prove Lemma 5.1.

Since Lemma 5.1 is trivial for h=2, we assume that h>2. Since $\tau_h(w) \equiv \rho_h \tau_h(w) \mod F(h+1)$, it follows from Lemma 3.7 that

$$D(x^{\lambda+1}, y^{\mu})^{0} \left(\frac{\partial \tau_{h}(w)}{\partial y}\right)^{\phi} = D(x^{\lambda+1}, y^{\mu})^{0} \left(\frac{\partial \rho_{h} \tau_{h}(w)}{\partial y}\right)^{\phi} \quad \text{for } \lambda + \mu + 2 = h.$$

Thus, Lemma 3.8 shows that

(5.8)
$$\beta(x, y, x^{\lambda}, y^{\mu}) = \frac{(-1)^{\lambda+\mu}}{(\lambda+1)!\mu!} D(x^{\lambda+1}, y^{\mu})^{0} \left(\frac{\partial \tau_{h}(w)}{\partial y}\right)^{0},$$

where $h = \lambda + \mu + 2$. By a direct calculation, the right-hand side of (5.8) becomes

$$\frac{(-1)^{\lambda+\mu}}{(\lambda+1)!\mu!} D(x^{\lambda+1}, y^{\mu})^{0} \left\{ \sum_{i} \sum_{p,q} (-1)\beta(x, u_{i}, x^{p-1}, y^{q}) \right. \\
\left. \cdot (1-x)^{p} (1-y)^{q} \left(\frac{\partial u_{i}}{\partial y} \right)^{\phi} + \left(\frac{\partial \overline{w}}{\partial y} \right)^{\phi} \right\} \\
= \frac{(-1)^{\lambda+\mu}}{(\lambda+1)!\mu!} \left\{ \sum_{i} \sum_{p} p!q! (-1)^{p+q+1} {\lambda+1 \choose p} {\mu \choose q} \beta(x, u_{i}, x^{p-1}, y^{q}) \right. \\
\left. \cdot D(x^{\lambda+1-p}, y^{\mu-q})^{0} \left(\frac{\partial u_{i}}{\partial y} \right)^{\phi} + D(x^{\lambda+1}, y^{\mu})^{0} \left(\frac{\partial \overline{w}}{\partial y} \right)^{\phi} \right\},$$

where the summation runs over all p, q and i such that $1 \le p \le \lambda + 1$, $0 \le q \le \mu$, $1 \le p + q \le \lambda + \mu$, $1 \le i \le m$.

Now consider the right-hand side of (5.4). By the chain rule, we have

$$(5.10) \qquad (-1)^{\lambda+\mu-1} \frac{1}{\lambda!\mu!} D(x^{\lambda}, y^{\mu})^{0} \left(\frac{\partial W^{\phi_{h-1}}}{\partial y}\right)^{\phi} \\ = \frac{(-1)^{\lambda+\mu-1}}{\lambda!\mu!} D(x^{\lambda}, y^{\mu})^{0} \left\{ \left(\frac{\partial W}{\partial y}\right)^{\phi} + \sum_{i} \left(\frac{\partial W}{\partial a_{i}}\right)^{\phi} \left(\frac{\partial a_{i}^{\phi_{h-1}}}{\partial y}\right)^{\phi} \right\}.$$

Then by Lemma 5.2, the first term of the right-hand side of (5.10) coincides with

the last term of the right-hand side of (5.9). Thus we only need to show that

$$\frac{1}{(\lambda+1)!\mu!} \sum \sum {\lambda+1 \choose p} {\mu \choose q} p! q! (-1)^{p+q} \beta(x, u_i, x^{p-1}, y^q)
\cdot D(x^{\lambda+1-p}, y^{\mu-q})^0 \left(\frac{\partial u_i}{\partial y}\right)^{\phi}
= \frac{1}{\lambda!\mu!} D(x^{\lambda}, y^{\mu})^0 \sum_{i} \left(\frac{\partial W}{\partial a_i}\right)^{\phi} \left(\frac{\partial a_i^{\phi_{i-1}}}{\partial y}\right)^{\phi},$$

where p, q run over the same range as defined in (5.8).

Now the chain rule shows that

$$\frac{\partial a_i^{\phi_{h-1}}}{\partial y} = \frac{\partial a_i^y}{\partial y} + \sum_k \frac{\partial a_i^y}{\partial a_k} \frac{\partial a_k^{\phi_{h-2}}}{\partial y} \quad \text{and} \quad \frac{\partial a_i^{\phi_2}}{\partial y} = \frac{\partial u_i}{\partial y}$$

Therefore, by induction, we can prove that

(5.12)
$$\frac{\partial a_i^{\phi_{k-1}}}{\partial y} = \sum_{i \leq j, \dots, k, l \leq m} \left(\frac{\partial a_i^{y}}{\partial a_j} \right) \cdots \left(\frac{\partial a_k^{y}}{\partial a_l} \right) \left(\frac{\partial u_l}{\partial y} \right) \cdot$$
at most $h-2$ factors

Noting that $(\partial a_i^{\nu}/\partial a_j)^0 = 0$, we see that

$$(5.13) D(x^{r}, y^{s})^{0} \left(\frac{\partial a_{i}^{\phi_{h-1}}}{\partial y}\right)^{\phi}$$

$$= {r \choose b} {s \choose c} \left[D(x^{b}, y^{c})^{0} \sum_{k} \left(\frac{\partial a_{i}^{y}}{\partial a_{i}}\right) \cdots \left(\frac{\partial a_{k}^{y}}{\partial a_{l}}\right) \right] D(x^{r-b}, y^{s-c})^{0} \left(\frac{\partial u_{l}}{\partial y}\right)^{\phi}}.$$

By substituting (5.7) and (5.13) into (5.11), we obtain an expression involving $\beta(x, u_i, x^{r-1}, y^s)$ and $D(x^r, y^s)(\partial u_i/\partial y)^{\phi}$. Compare the term involving $D(x^{\lambda+1-p}, y^{\mu-q}) \cdot (\partial u_i/\partial y)^{\phi}$. In the left-hand side of (5.11), the coefficient of this term is

(5.14)
$$\frac{1}{(\lambda+1)!\mu!} (-1)^{p+q} {\lambda+1 \choose p} {\mu \choose q} \beta(x, u_i, x^{p-1}, y^q).$$

On the other hand, in the right-hand side of (5.11), it is

$$(5.15) \frac{1}{\lambda!\mu!} \binom{\lambda}{p-1} \binom{\mu}{q} D(x^{p-1}, y^q)^0 \left[\sum \left(\frac{\partial W}{\partial a_j} \right) \cdots \left(\frac{\partial a_k^{\gamma}}{\partial a_i} \right) \right]^{\phi}.$$

Thus it is enough to show that these expressions coincide. Then, by a direct computation, it reduces to

$$(5.16) \quad (-1)^{p+q}\beta(x, u_i, x^{p-1}, y^q) = \frac{1}{(p-1)!q!} D(x^{p-1}, y^q)^0 \left[\left(\frac{\partial W}{\partial a_j} \right) \cdots \left(\frac{\partial a_k^{\gamma}}{\partial a_i} \right) \right]^{\phi}.$$

Now (5.16) will be proved by induction on p+q.

In the case where p+q=1, i.e. p=1 and q=0, (5.16) becomes $(-1)\beta(x, u_i) = (\partial W/\partial a_i)^0$. This is true by Lemma 5.5.

Suppose (5.16) holds for r+s < p+q. Then

$$(-1)^{p+q}\beta(x, u_i, x^{p-1}, y^q)$$

$$= \sum \frac{1}{p!q!} r!s!(-1)^{r+s-1} {p \choose r} {q \choose s} \frac{(-1)^{r+s-1}}{(r-1)!s!} D(x^{r-1}, y^s)^0$$

$$\cdot \left[\sum \left(\frac{\partial W}{\partial a_j} \right) \cdots \left(\frac{\partial a_k^p}{\partial a_l} \right) \left(\frac{\partial u_l}{\partial a_l} \right) \right]^{\phi} D(x^{p-r}, y^{q-s})^0 \left(\frac{\partial u_l}{\partial a_i} \right)^{\phi}$$

$$(5.17) \qquad + \frac{1}{(p-1)!q!} D(x^{p-1}, y^q)^0 \left(\frac{\partial W}{\partial a_i} \right)^{\phi}$$

$$= \frac{1}{(p-1)!q!} D(x^{p-1}, y^q)^0 \left(\frac{\partial W}{\partial a_i} \right)^{\phi} + \sum \frac{1}{p!q!} r!s! {p \choose r} {q \choose s} \frac{1}{(r-1)!s!} D(x^{r-1}, y^s)^0$$

$$\cdot \left[\left(\frac{\partial W}{\partial a_j} \right) \cdots \left(\frac{\partial a_k^p}{\partial a_l} \right) \left(\frac{\partial u_l}{\partial a_l} \right) \right]^{\phi} D(x^{p-r}, y^{q-s})^0 \left(\frac{\partial u_l}{\partial a_l} \right)^{\phi}.$$

Since

$$\frac{1}{p!} \frac{1}{q!} r! s! \binom{p}{r} \binom{q}{s} \frac{1}{(r-1)! s!} = \frac{1}{(p-1)! q!} \binom{p-1}{r-1} \binom{q}{s},$$

(5.17) becomes

$$(-1)^{p+q}(x, u_i, x^{p-1}, y^q) = \frac{1}{(p-1)!q!} D(x^{p-1}, y^q)^0 \left\{ \left(\frac{\partial W}{\partial a_i} \right) + \sum \left(\frac{\partial W}{\partial a_k} \right) \cdots \left(\frac{\partial u_t}{\partial a_i} \right) \right\}^{\phi}$$
$$= \frac{1}{(p-1)!q!} D(x^{p-1}, y^q)^0 \sum \left\{ \left(\frac{\partial W}{\partial a_k} \right) \cdots \left(\frac{\partial u_t}{\partial a_i} \right) \right\}^{\phi}.$$

This proves Lemma 5.1.

6. The group of a link. Let $\mathcal{P}(G) = (x_{i,j}; r_{i,j})$ be a Wirtinger presentation of G of a link with n components. The standard presentation \mathcal{P}_s of G is a presentation [6]:

$$\mathscr{P}_{s}(G) = (x_{i,j}: s_{i,j}, 1 \leq i \leq n, 1 \leq j \leq \lambda_{i}),$$

where $s_{i,j} = v_{i,j} x_{i,1} v_{i,j}^{-1} x_{i,j+1}^{-1}$.

Let $\widetilde{F} = (x_{i,j}, 1 \le i \le n, 1 \le j \le \lambda_i)$ and $F = (x_i, a_{i,j}, 1 \le i \le n, 2 \le j \le \lambda_i)$. Then there exists an isomorphism $\chi: \widetilde{F} \to F$ defined by

(6.1)
$$\chi(x_{i,j}) = x_i \text{ and } \chi(x_{i,j}) = a_{i,j}^{-1} x_i, \quad j \ge 2.$$

By means of χ , we can obtain a new presentation \mathscr{P}_0 of G.

$$\mathscr{P}_0(G) = (x_i, a_{i,j}: t_{i,j-1}, t_i, 1 \le i \le n, 2 \le j \le \lambda_i),$$

where $t_{i,j-1} = \chi(s_{i,j-1})$ and $t_i = \chi(s_{i,\lambda_i})$.

It is evident that $t_{i,j-1} = [x_i, u_{i,j}]^{-1} a_{i,j}$ and $t_i = [\xi_i, x_i]$, where $u_{i,j} = \chi(v_{i,j})$ and $\xi_i = \chi(v_{i,\lambda_i})$.

In order to apply lemmas obtained in the previous sections on the link group, we shall define a mapping τ .

Let $\Omega = \{x_1, \ldots, x_n\}$ and $\Gamma = \{a_{i,j}\}.$

First, we define the order "<" in $\mathcal{S}(F) = \Omega \cup \Gamma$ as follows:

(6.2)
$$x_i < a_{j,k} \text{ for any } i, j, k,$$

$$x_i < x_j \text{ iff } i < j, \text{ and}$$

$$a_{j,k} < a_{l,m} \text{ iff } j < l \text{ or } j = l, k < m.$$

We extend this order lexicographically to an order in the set of normal elements of the same length. (See §§4 and 5.)

Now, τ will be defined as

(6.3)
$$\tau(a_{i,j}) = t_{i,j} \quad \text{and} \quad \tau(x_i) = x_i.$$

Since τ satisfies (4.2) and (5.1), $\{\tau_n\}$ also are defined. Further, ν , σ and ϕ_r are defined by (5.2). With these endomorphisms and χ , we introduce another endomorphism $\tilde{\nu}$ of \tilde{F} and $\tilde{\sigma}$ as follows:

(6.4)
$$\tilde{\nu} = \chi^{-1}\nu\chi \quad \text{and} \quad \tilde{\sigma} = \sigma\chi.$$

Then the homomorphism θ_p in [6] is exactly $\tilde{\sigma}\tilde{v}^{p-1}$, $p \ge 1$ and

(6.5)
$$\theta_p = \phi_p \chi, \text{ for } p \ge 1.$$

Now, Theorem 3.1 shows that a free generator of Q(F;q) is represented by a standard element of F(q).

DEFINITION 6.1. A standard element $[z_1, \ldots, z_q]$ of F(q) is said to be substantial if every z_i lies in Ω . Otherwise, it is insubstantial.

Now the longitude l_i of each component L_i of a link L represents an element of the link group G of L. By a suitable choice of the base point of G, we may assume without loss of generality that l_i is represented by $t_i = [\xi_i, x_i]$ in $\mathcal{P}_0(G)$.

Suppose that L has only two components. Then we can prove

THEOREM 6.1.

$$(6.6) \quad \frac{1}{p!q!} D(x_1^p, x_2^q)^0 \left(\frac{\partial \xi_2^{\tilde{\theta}}}{\partial x_1} \right)^{\phi} \equiv \frac{(-1)^q}{p!q!} D(x_1^p, x_2^q)^0 \ \Delta(x_1, x_2) \ \text{mod} \ A^{(p+q-1)}(L),$$

where $\vec{\phi} = \phi_{p+q+1}$.

REMARK. (6.6) remains true if $(\partial \xi_2^{\tilde{\phi}}/\partial x_1)$ is replaced by $\partial \tilde{\xi}_1^{\tilde{\phi}}/\partial x_2$ in the left-hand side and $(-1)^q$ by $(-1)^p$ in the right-hand side.

Proof. Let η_2 be the element representing a longitude of the second component L_2 of L in the standard presentation $\mathscr{P}_s(G)$.

Then (6.4) implies that $\eta_2^{\theta} = \xi_2^{\tilde{\phi}}$, where $\theta = \theta_{p+q+1}$ and $\tilde{\phi} = \phi_{p+q+1}$. Thus, in order to prove (6.6) it suffice ω show that

$$(6.7) \quad \frac{1}{p!q!} D(x_1^p, x_2^q)^0 \left(\frac{\partial \eta_2^\theta}{\partial x_1} \right)^{\phi} \equiv (-1)^q \frac{1}{p!q!} D(x_1^p, x_2^q)^0 \ \Delta(x_1, x_2) \ \text{mod} \ A^{(p+q+1)}(L).$$

However, this is essentially what we have proved in [6]. To ensure it we shall follow the proof of Theorem 4.1 in [6]. To avoid a confusion on notation involved, it should be noted that x_1 , x_2 in (6.7) are denoted by x, y in [6]. First, for the case p+q=0, Theorem 6.1 is true. Now we may assume inductively that the theorem is true for (r, s) < (p, q). From the chain rule, it follows that

$$\frac{\partial \eta^{\theta}}{\partial x} = \sum \left(\frac{\partial \eta}{\partial x_{i}} \right)^{\theta} \left(\frac{\partial x_{i}^{\theta}}{\partial x} \right) + \sum \left(\frac{\partial \eta}{\partial y_{k}} \right)^{\theta} \frac{\partial y_{k}^{\theta}}{\partial x}.$$

Thus we see that

$$\frac{1}{p!q!} D(x^p, y^q)^0 \left(\frac{\partial \eta^{\theta}}{\partial x}\right)^{\phi}$$

is equal to the right-hand side of (6.1) in [6]. On the other hand, (7.1) in [6] holds. By the induction assumption, we obtain

$$\frac{1}{r!} \frac{1}{s!} D(x^r, y^s)^0 \Delta(x, y) \equiv 0 \bmod A^{(p+q-1)}(L).$$

Thus the same argument as was used in §§7-8 in [6] shows that we need only prove that

(6.8)
$$X_i^{\theta}(r,s)^0 \equiv \Gamma_i^{p,q}(p-r,q-s) \bmod A^{(p+q-1)},$$

$$Y_{\theta}^{\theta}(r,s)^0 \equiv \Lambda_i^{p,q}(p-r,q-s) \bmod A^{(p+q-1)}.$$

If in §8 in [6] we replace *modulo* $\Delta^*([p+1,q+1])$ by mod $A^{(p+q-1)}$, the proof given there goes through. Thus (6.6) holds.

7. A presentation of the Chen group of L. In this section we shall find a presentation of Q(G; q) for the link group G.

LEMMA 7.1. Let $\mathscr{P}_0(G) = (x_i, a_{i,j} : t_{i,j}, t_i)$ be a presentation of the link group G given in §6. Let $R = \langle t_{i,j}, t_i \rangle$. Suppose that $F(q) \cap R = \langle w_1, \ldots, w_r, \ldots, w_p \rangle$, $w_i \in F$, where w_1, \ldots, w_r are linearly independent mod F(q+1) and $w_{r+1}, \ldots, w_p \in F(q+1)$. Then $F(q+1) \cap R = \langle [w_i, x_j], [w_i, a_{k,l}], w_{r+1}, \ldots, w_p, 1 \le i \le r, 1 \le j, k \le n, 2 \le l \le \lambda_k \rangle$.

Proof. In Lemma A5 [1] put G=F, H=F(q+1), M=F(q) and $N=F(q) \cap R$. Then $H \subseteq M$ and $[M, G]=[F(q), F] \subseteq F(q+1)$. Then the lemma follows immediately from Lemma A5 in [1].

Consider the following disjoint set $W_{i,j}$ of F(q).

$$(7.1) W_{1,1} = \{t_{i,j}\},$$

$$W_{1,q} = \{[x_k, t_{i,j}, z_1, \dots, z_{q-2}]\} \text{ for } q \ge 2,$$

$$W_{2,q} = \{[t_{i,j}, a_{k,l}, z_1, \dots, z_{q-2}]\} \text{ for } q \ge 2, \text{ and}$$

$$W_{3,q} = \{[x_i, x_j, z_1, \dots, z_{k-1}, t_{l,m}, z_{k+1}, \dots, z_{q-2}]\} \text{ for } q \ge 3,$$

where $z_i \in \mathcal{S}(F)$ and the ϕ -image of any elements in $W_{i,j}$ is standard. Let $W_q = \bigcup_{i=1}^3 W_{i,q}$.

We should note that if g is an insubstantial generator of F(q) then $\tau(g)$ is contained in W_q .

LEMMA 7.2. The set W_q is linearly independent mod F(q+1).

Proof. Since $t_{ij} \equiv a_{ij} \mod F(2)$, W_q is in one-one correspondence to the set of insubstantial generators of F(q). Thus the lemma follows.

Lemma 4.3 implies

$$(7.2) W_{2,q} \cup W_{3,q} \subset H_{\Omega}(\infty).$$

In the following, we always assume that n=2, i.e. L has only two components and we use x, y instead of x_1 , x_2 ; ζ instead of ξ_2 .

Now consider $t_2 = [\zeta, y]$. Let p be the *first* integer such that $\tau_p(t_2)^\sigma \not\equiv 1 \mod F(p+1)$. Such an integer p may not exist. If it exists, it is uniquely determined. Thus p will be denoted by p(G). For the sake of convenience, we say $p(G) = \infty$ if p does not exist.

LEMMA 7.3. Let $A^{(k)}(L)$ be the first nonzero member of $\{A^{(k)}(L)\}$. Then p(G) = k + 1. Consequently, $p(G) = \infty$ iff $\Delta(x, y) = 0$.

A proof follows immediately from Lemma 5.1 and Theorem 6.1.

Now we define a new set R_q in F(q) as follows.

For q < p(G), $R_q = \{\tau_{q+1}(t_2)\}\$ and for $q \ge p(G) = p$,

$$R_q = \{ [\tau_p(t_2), x^{\lambda}, y^{\mu}], 0 \le \lambda, \mu \le q - p, \lambda + \mu = q - p \}.$$

LEMMA 7.4. For $q \ge p(G)$, $R_q \cup W_q$ is linearly independent mod F(q+1).

Proof. Suppose $\tau_p(t_2)^{\sigma} \equiv \prod [x, y, x^{\gamma}, y^{\delta}]^{\beta(x, y, x^{\gamma}, y^{\delta})} \mod F(p+1)$. Since $\tau_p(t_2)^{\sigma} \not\equiv 1 \mod F(p+1)$, some β are not zero. Then

$$[\tau_p(t_2), x^{\lambda}, y^{\mu}] \equiv \prod_{\gamma, \delta} [x, y, x^{\lambda+\gamma}, y^{\mu+\delta}]^{\beta(x, y, x^{\gamma}, y^{\delta})} \bmod F(q+1) \langle W_q \rangle.$$

This implies the lemma.

LEMMA 7.5. Let g = [W, z] be an element of F(q), $q \ge 3$, where $W \in W_{q-1}$ and $z \in \mathcal{S}(F)$. Let $\bar{g} = g^{\phi \rho \tau}$. Then $r(g) = g\bar{g}^{-1}$ is in $H_{\Omega}(\infty) \cap F(q+1)$. ρ denotes the standardization ρ_q .

Proof. Suppose $W \in W_{1,q-1}$, i.e. $W = [x_k, t_{i,j}, z_1, \ldots, z_{q-3}]$. Then $g = [x_k, t_{i,j}, z_1, \ldots, z_{q-3}, z]$. If $z \ge x_k$, then from Lemma 3.3 we see that g is congruent to an element

$$g_1 = [x_k, t_{i,j}, z_1, \dots, z_p, z, z_{p+1}, \dots, z_{q-3}] \mod F'',$$

where g_1^{ϕ} is standard. Since $g^{\phi\rho} = g_1^{\phi}$, $\bar{g} = g^{\phi\rho\tau} = g_1^{\phi\tau} = g_1$. Thus $r(g) = g\bar{g}^{-1} = gg_1^{-1} \in F''$ $\subset H_{\Omega}(\infty) \cap F(q+1)$.

If $z < x_k$, then from Lemmas 3.3 and 3.4, it follows easily that $g \equiv g_1^{-1}g_2 \mod F''$, where $g_1 = [z, x_k, z_1, \dots, z_p, t_{i,j}, z_{p+1}, \dots, z_{q-3}]$ and $g_2 = [z, t_{i,j}, x_k, z_1, \dots, z_{q-3}]$.

We should note that g_1^{ϕ} , g_2^{ϕ} are standard and $g_1^{\phi} < g_2^{\phi}$. Let z_m be the first element in Γ occurring in a sequence $z_1, \ldots, z_p, a_{i,j}$. Then, since $\tau(z_m) = t_{r,s} \equiv z_m \mod F(2)$, it follows from 3.1 that

 $g_1 \equiv g_1' = [z_1, x_k, z_1, \ldots, z_{m-1}, t_{r,s}, z_{m+1}, \ldots, z_p, a_{i,j}, z_{p+1}, \ldots, z_{q-3}] \mod F(q+1)$

and hence, $g \equiv g_1'^{-1}g_2 \mod F(q+1)$. Since $g^{\phi\rho} = (g_1'^{\phi})^{-1}g_2^{\phi}$, $\bar{g} = g^{\phi\rho\tau} = ((g_1'^{\phi})^{-1}g_2^{\phi})^{\tau} = g_1'^{-1}g_2$. Therefore, $r(g) = g\bar{g}^{-1} = g(g_1'^{-1}g_2)^{-1} \in F(q+1)$. Next, we have to show that $r(g) \in H_{\Omega}(\infty)$. Since g_1' satisfies the assumption in Lemma 4.2, $g_1' \in H_{\Omega}(\infty)$. Therefore, Lemma 4.3 shows that $g_2'^{\phi\tau} = g_1' \in H_{\Omega}(\infty)$. Thus, it remains only to show that g_2 and g belong to $H_{\Omega}(\infty)$.

We consider two cases.

Case 1. Some element in Γ occurs in a sequence z_1, \ldots, z_{q-3} .

Then, from Lemma 4.2 we see that g^{ϕ} and g_2^{ϕ} belong to $H_{\Omega}(\infty)$, and hence, both $g = g^{\phi \tau}$ and $g_2 = g_2^{\phi \tau}$ are in $H_{\Omega}(\infty)$.

Case 2. $z_i \in \Omega$ for all i.

Then $g_2 = [z, t_{i,j}, x_k, z_1, \ldots, z_{q-3}]$ and $g_1 = [z, x_k, z_1, \ldots, z_{q-3}, t_{i,j}]$. Since $(g_1^{\phi})^{-1}g_2^{\phi} = g^{\phi\rho}, \ \bar{g} = g^{\phi\rho\tau} = (g_1^{\phi\tau})^{-1}g_2^{\phi\tau} = g_1^{-1}g_2$. Therefore, $r(g) = g\bar{g}^{-1} = g(g_1^{-1}g_2)^{-1} \in F'' \subset F(q+1) \cap H_{\Omega}(\infty)$.

Thus, we have proved that if $W \in W_{1,q-1}$ then $r(g) \in H_{\Omega}(\infty) \cap F(q+1)$.

In the other case where $W \in W_{2,q-1}$ or $W_{3,q-1}$, the exact same method is available, but the proof is much shorter, because we already know that g and \bar{g} are in $H_{\Omega}(\infty)$. So we shall omit the details.

LEMMA 7.6. $R \cap F(q) = \langle W_q, R_q, K_q \rangle$, where K_q is a certain collection of elements in $H_{\Omega}(\infty) \cap F(q+1)$ and it will be defined in the proof.

Proof. In the case q=1, since $F(1)\cap R=R=\langle t_{i,j},t_i\rangle$, Lemma 7.6 is certainly true, where K_1 is empty. Suppose that Lemma 7.6 is true for r< q. First we assume that q < p(G). Since R_q and K_q are subsets of F(q+1), Lemma 7.1 implies that $F(q+1)\cap R=\langle \tilde{W}_{q+1},K_q,R_q\rangle$, where $\tilde{W}_{q+1}=\{[w,z],w\in W_q,z\in \mathcal{S}(F)\}$. We note that $\tilde{W}_{q+1}\supset W_{q+1}$. Take an element g=[w,z] from $\tilde{W}_{q+1}-W_{q+1}$. Then by Lemma 7.5, $r(g)=g(g^{\phi\rho\tau})^{-1}$ is in $H_{\Omega}(\infty)\cap F(q+1)$. Let K'_{q+1} be the totality of r(g) for $g\in \tilde{W}_{q+1}-W_{q+1}$. This will be a part of K_{q+1} sought. Since, for any standard generator f of F(q+1), f^{τ} is in W_{q+1} , we see that $\langle \tilde{W}_{q+1}\rangle = \langle W_{q+1},K'_{q+1}\rangle$. Next, take an element g from K_q . Then Lemma 4.5 shows that $\tau_{q+2}(g)\in H_{\Omega}(\infty)\cap F(q+2)$. Let K''_{q+1} denote the totality of $\tau_{q+2}(g)$ for $g\in K_q$. Then it is verified that $\langle W_{q+1},K_q\rangle = \langle W_{q+1},K''_{q+1}\rangle$. Let $K_{q+1}=K''_{q+1}\cup K'''_{q+1}$. Then $\langle \tilde{W}_{q+1},K_q\rangle = \langle W_{q+1},K''_{q+1}\rangle$. Similarly, we can prove that $\langle R_q,W_{q+1}\rangle = \langle R_{q+1},W_{q+1}\rangle$. Thus $R\cap F(q+1)=\langle W_{q+1},R_{q+1},K_{q+1}\rangle$.

Now consider the case where $q \ge p(G)$. Since $W_q \cup R_q$ is linearly independent mod F(q+1), it follows that $F(q+1) \cap R = \langle \widetilde{W}_{q+1}, K_q, \widetilde{R}_{q+1} \rangle$, where $\widetilde{R}_{q+1} = \{ [\tau_p(t_2), x^{\lambda}, y^{\mu}, z] \}$. Of course, $\widetilde{R}_{q+1} \supseteq R_{q+1}$. Let K'_{q+1}, K''_{q+1} be the same sets as are defined in the previous paragraphs. Then $\langle \widetilde{W}_{q+1}, K_q \rangle = \langle W_{q+1}, K'_{q+1}, K''_{q+1} \rangle$.

We shall define the third set $K_{q+1}^{\prime\prime\prime}$. Take an element g from $\tilde{R}_{q+1}-R_{q+1}$. g is of the form: $[\tau_p(t_2), x^{\lambda}, y^{\mu}, z]$. If z is in Γ then $g \in H_{\Omega}(\infty) \cap F(q+1)$. Thus $s(g) = \tau_{q+2}(g)$ is in $H_{\Omega}(\infty) \cap F(q+2)$ by Lemma 4.5. If z is in Ω then z=x and $s(g)=g[\tau_p(t_2), x^{\lambda+1}, y^{\mu}]^{-1}$ lies in F'' and hence, $s(g) \in H_{\Omega}(\infty) \cap F(q+2)$. Let $K_{q+1}^{\prime\prime\prime}$ be the totality of s(g) for $g \in \tilde{R}_{q+1}-R_{q+1}$. Then $\langle R_{q+1} \rangle = \langle R_{q+1}, K_{q+1}^{\prime\prime\prime} \rangle$. Let $K_{q+1}=K_{q+1}^{\prime} \cup K_{q+1}^{\prime\prime\prime} \cup K_{q+1}^{\prime\prime\prime}$. Then $\langle \tilde{W}_{q+1}, \tilde{R}_{q+1}, K_{q} \rangle = \langle W_{q+1}, R_{q+1}, K_{q+1} \rangle$. This proves the lemma.

LEMMA 7.7. If g is an insubstantial generator of F(q), then gF(q+1) is contained in $(F(q) \cap R)F(q+1)$.

Proof. We know from Lemma 7.6 that $F(q) \cap R = \langle W_q, R_q, K_q \rangle$. Let $g = [z_1, \ldots, z_q]$ and z_i the first element of Γ occurring in the sequence z_1, \ldots, z_q . Then, since $z_i \equiv t_{j,k} \mod F(2)$, we see that

$$gF(q+1) = [z_1, ..., z_q]F(q+1)$$

$$= [z_1, ..., z_{i-1}, t_{j,k}, z_{i+1}, ..., z_q]F(q+1)$$

$$\subset W_oF(q+1) \subset (F(q) \cap R)F(q+1), \qquad Q.E.D.$$

From Lemmas 7.6 and 7.7, we obtain immediately

LEMMA 7.8. For the link group G,

$$Q(G;q) = ([x, y, x^{\lambda}, y^{\mu}], 0 \le \lambda, \mu \le q-2, \lambda + \mu = q-2 : R_q^{\sigma}, F(q+1)^{\sigma}).$$

Let $\tau_{p(G)}(t_2)^{\sigma} \equiv \prod [x, y, x^{\lambda}, y^{\mu}]^{\beta(\lambda, \mu)} \mod F(p+1)$. Since not all $\beta(\lambda, \mu)$ are zero, $d = \text{g.c.d.}_{\lambda, \mu} \{\beta(\lambda, \mu)\}$ is not zero. Then from Lemma 7.8, it follows

LEMMA 7.9.

$$Q(G;q) \cong Z^{q-1}$$
 for $q < p(G) = p, q \ge 2$,
 $Q(G;p) \cong Z_d + Z^{p-2}$.

8. Determination of Q(G;q). To determine Q(G;q) for $q \ge p(G) + 1$, we need the following

LEMMA 8.1. Let

$$M(m,n) = \begin{bmatrix} a_1 & \cdots & a_n & & & 0 \\ & a_1 & \cdots & a_n & & \\ & & \ddots & \ddots & \ddots & \\ 0 & & \ddots & \ddots & \ddots & \\ & & & & a_1 & \cdots & a_n \end{bmatrix}$$

be an $m \times (n+m-1)$ matrix with entries in the integer ring Z. Let $\varepsilon_{\lambda}(M)$ be the ideal generated by $\lambda \times \lambda$ minors of M(m, n). Then $\varepsilon_{\lambda}(M) = (d^{\lambda})$, where d = g.c.d. $\{a_1, \ldots, a_n\}$ and $1 \le \lambda \le m$.

Proof. For n=1 or m=1, the lemma is obvious. Thus we assume that the lemma is true for $M(\overline{m}, \overline{n}), (\overline{m}, \overline{n}) < (m, n)$. Consider $\varepsilon_{\lambda}(M(m, n))$. First we should

note that it is sufficient to show that $\varepsilon_{\lambda}(M) = Z$ if d = 1. Since $\varepsilon_{\lambda}(M(m, n)) \supset \varepsilon_{\lambda}(M(m-1, n)) = Z$, it follows that for $1 \le \lambda < m$, $\varepsilon_{\lambda}(M(m, n)) = Z$ and hence, it remains to show that $\varepsilon_{m}(M(m, n)) = Z$. Or equivalently, $m \times m$ minors of M(m, n) generate Z.

Now by the induction assumption, we know that for the matrix

$$N(m-1, n-1) = \begin{bmatrix} 0 & a_2 & \cdots & a_n & & 0 \\ & 0 & a_2 & \cdots & a_n & & \\ & & \ddots & \ddots & \ddots & \ddots & \\ & 0 & & \ddots & \ddots & \ddots & \ddots & \\ & & & 0 & a_2 & \cdots & a_n \end{bmatrix},$$

$$\varepsilon_{\lambda}(N) = (d_1^{\lambda}), \qquad 1 \leq \lambda < m, \quad d_1 = \text{g.c.d.} (a_2, \dots, a_n).$$

Consider the set $\widetilde{M}(j)$ of all $m \times m$ minors of M(m, n) that contains (1, j) entry a_j . $\widetilde{M}(j)$ generates an ideal K_j in Z. Then $\varepsilon_m(M) = K_1 + \cdots + K_n$.

We may assume that $a_1 \neq 0$, otherwise by the induction assumption, we are done. Then $K_1 = (a_1)$, since $\varepsilon_{m-1}(M(m-1,n)) = Z$. Consider the matrix $\tilde{N} = N(m-1,n-1)$. Then by the induction assumption, $\varepsilon_{m-1}(\tilde{N}) = (d_1^{m-1})$. Therefore, $K_2 \subset \varepsilon_{m-1}(\tilde{N}) + (a_1) = (d_1^{m-1}) + (a_1)$. On the other hand, any element \tilde{D} of $\varepsilon_{m-1}(\tilde{N})$ can be written as $\tilde{D} = a_2 D + a_1 b$ for some $m \times m$ minor D of $\tilde{M}(2)$ and some integer b. Thus $\varepsilon_{m-1}(\tilde{N}) \subset K_2 + K_1$. Therefore, $K_1 + K_2 \subset K_1 + \varepsilon_{m-1}(\tilde{N}) \subset K_1 + K_2$.

Since d_1 and a_1 are relatively prime, so are d_1^{m-1} and a_1 . Thus $\varepsilon_m(M) \supset K_1 + K_2 = Z$.

From Lemmas 7.9 and 8.1, it follows that

LEMMA 8.2. $Q(G;q) \cong \mathbb{Z}_d^{q-p} + \mathbb{Z}^{p-1}$ for $q \ge p(G) + 1$, where d is the same integer as in Lemma 7.9.

On the other hand, the integer d can be described in terms of $A^{(k)}(L)$. In fact, Lemma 5.1 and Theorem 6.1 imply that

(8.2)
$$A^{(q)}(L) = 0 \text{ for } q < p-1, \\ A^{(p-1)}(L) = d.$$

Thus we have finally:

THEOREM 8.1. Let L be a link with two components. Let $d = A^{(p-1)}(L)$ be the first nonzero member of $\{A^{(k)}(L)\}$. Then

$$Q(G;q) \cong Z^{q-1}$$
 for $q < p$,
 $Q(G;q) \cong Z_d^{q-p} + Z^{p-2}$ for $q \ge p$.

COROLLARY. $\Delta(x, y) = 0$ iff $Q(G; q) \cong \mathbb{Z}^{q-1}$ for any $q \ge 2$.

As an application, we shall prove the following

THEOREM 8.2. Let L be a link with two components. Then $\Delta(x, y) = 0$ iff each longitude lies in $G(\infty)$.

Proof. Let ξ and η be longitudes of L. From the remark given in Theorem 6.1, we see that we need only show that ξ lies in $G(\infty)$ iff $\Delta(x, y) = 0$. Further, Theorem 6.1 shows that we need only show that

(8.3)
$$\xi \in G(\infty)$$
 iff $D(x^{\lambda}, y^{\mu})^{0} (\partial \xi^{\phi_{k+1}}/\partial y)^{\phi} = 0$, for any $k, 0 \le k = \lambda + \mu$.

Since (8.3) is equivalent to

(8.4) $\xi \in G(n)$ iff $D(x^{\lambda}, y^{\mu})^{0} (\partial \xi^{\phi_{k+1}}/\partial y)^{\phi} = 0$, for any $k, 0 \le k = \lambda + \mu \le n-2$. we shall prove (8.4).

Now (8.4) is certainly true for n=2. In fact, let $\xi \equiv y^{\alpha} \prod_{i,j} a_{i,j}^{\beta_{i,j}} \mod F(2)$. Then $\xi^{\phi_1} \equiv y^{\alpha} \mod F(2)$. Therefore $(\partial \xi^{\phi_1}/\partial y)^0 = \alpha = 0$ implies $\xi \equiv \prod_{i,j} a_{i,j}^{\beta_{i,j}} \mod F(2)$. Since $a_{i,j} = [x_i, u_{ij}]$ in G, we see that $a_{ij} \equiv 1 \mod G(2)$. Thus $\xi \in G(2)$. Conversely, if $\xi \in G(2)$, then we can write

(8.5)
$$\xi \equiv [x, y]^{\alpha} \prod [x, a_{ij}]^{\beta_{ij}} \prod [y, a_{ij}]^{\gamma_{ij}} \prod [a_{ij}, a_{kl}]^{\delta} \mod F(3).$$

Then $\xi^{\phi_1} \equiv [x, y]^{\alpha} \mod F(3)$. Thus, $(\partial \xi^{\phi_1}/\partial y)^0 = 0$.

Now we assume inductively that (8.4) is true for any m < n. Suppose that

$$D(x^r, y^s)^0(\partial \xi^{\phi_{k+1}}/\partial y)^{\phi} = 0$$

for any k, $0 \le k = r + s \le n - 2$. Then by the induction assumption $\xi \in G(n-1)$. Thus we can write

(8.6)
$$\xi \equiv \prod_{\lambda+\mu=n-3} [x, y, x^{\lambda}, y^{\mu}]^{\alpha(\lambda,\mu)} \prod [z_1, \ldots, z_{n-1}]^{\beta} \mod F(n),$$

where $[z_1, \ldots, z_{n-1}]$ is a standard element in which at least one of z_i is in Γ . Then $[z_1, \ldots, z_{n-1}]^{\phi_{n-1}} \in F(n)$. Thus $\xi^{\phi_{n-1}} \equiv \prod [x, y, x^{\lambda}, y^{\mu}]^{\alpha(\lambda, \mu)} \mod F(n)$. Then from Lemma 3.8 and our assumption, we see that

$$D(x^{\lambda+1}, v^{\mu})^{0}(\partial \xi^{\phi_{n-1}}/\partial v)^{\phi} = (\lambda+1)!\mu!\alpha(\lambda, \mu) = 0.$$

Thus $\xi \equiv \prod [z_1, \ldots, z_{n-1}]^{\beta} \mod F(n)$. Since one of z_i is in Γ , it follows that $[z_1, \ldots, z_{n-1}] \equiv 1 \mod G(n)$. Hence, $\xi \in G(n)$.

Conversely, we assume that $\xi \in G(n)$. Then we can write

$$\xi = \prod_{\lambda+\mu=n-2} [x, y, x^{\lambda}, y^{\mu}]^{\beta(\lambda,\mu)} \prod [z_1, \ldots, z_n] \bmod F(n+1)$$

where $[z_1, \ldots, z_n]$ is a standard element in which at least one of z_i is in Γ . Then

$$\xi^{\phi_{n-1}} \equiv \prod_{\lambda,\mu} [x, y, x^{\lambda}, y^{\mu}]^{\beta(\lambda,\mu)} \bmod F(n+1),$$

since $[z_1, \ldots, z_n]^{\phi_{n-1}} \in F(n+1)$ for $n \ge 2$. Thus for p+q=n-2, $D(x^p, y^q)^0(\partial \xi^{\phi_{n-1}}/\partial y) = 0$. This completes the proof.

REFERENCES

1. K. T. Chen, Integration in free groups, Ann. of Math. (2) 54 (1951), 147-162. MR 13, 105.

- 2. R. H. Crowell and R. H. Fox, *Introduction to knot theory*, Ginn. Boston, Mass., 1963. MR 26 #4348.
- 3. R. H. Fox, Free differential calculus. I: Derivation in the free group ring, Ann. of Math. (2) 57 (1953), 547-560. MR 14, 843.
- 4. R. H. Fox, K. T. Chen and C. Lyndon, Free differential calculus. IV, Ann. of Math. (2) 68 (1958), 81-95.
- 5. J. Milnor, Isotopy of links. Algebraic geometry and topology, A Symposium in Honor of S. Lefschetz, Princeton Univ. Press, Princeton, N. J., 1957, pp. 280-306. MR 19, 1070.
- 6. K. Murasugi, On Milnor's invariant for links, Trans. Amer. Math. Soc. 124 (1966), 94-110. MR 33 #6611.
- 7. N. Smyth, "Boundary links," in *Topology seminar*, Wisconsin, 1965, R. H. Bing and R. J. Bean (editors), Ann. of Math. Studies, no. 60, Princeton Univ. Press, Princeton, N. J., 1966, pp. 69-72. MR 34 #1974.

University of Toronto, Toronto, Canada